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Abstract

Simulating complex dynamics with traditional simulators is computationally challenging
and often inaccurate. Deep learning models can be an efficient alternative for simulating
such dynamics and can extend or replace parts of traditional simulators. Training such
models within differentiable physics frameworks, allows for stronger interaction between
the models and the underlying dynamics. We extend the ΦFlow framework with a differ-
entiable Fluid-Implicit-Particle (FLIP) simulator for incompressible, inviscid fluids. We
test the physical behavior of our simulation in different scenarios and demonstrate its
differentiability in simple optimization experiments. We then use data from this FLIP
simulator to train and evaluate Graph Network-based Simulators (GNS), a recently pro-
posed framework for learning simulations from data. We introduce a new multi-step
loss which improves the capacity of the trained models to mitigate accumulating errors,
and show that GNS models trained with this loss yield competitive results compared to
models using artificial noise for error mitigation. We demonstrate that the generalization
capabilities of GNS models can be improved by replacing domain-specific features with
pure particle interactions. Our results indicate that the GNS models do not really learn
the underlying physics, but problem-specific correlations between the input velocities
and output accelerations.
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Chapter 1

Introduction

Simulating complex dynamics is invaluable to many fields in computer graphics and the
natural sciences. Numerical simulations of such dynamics are computationally challen-
ging and are often inaccurate in approximating the underlying physical systems [59].
Recent work suggests, that deep learning models can be an efficient and accurate altern-
ative to traditional, hand-crafted simulation approaches [64, 36, 74]. However, learning
complex physics with such data-driven models is a challenging task. Recently developed
differentiable physics frameworks [38, 68, 40] simplify the interaction between deep learn-
ing models and physics, and provide useful tools for running simulations and solving
optimization problems.

The first goal of this thesis is to extend the differentiable physics toolbox by implement-
ing a differentiable Fluid-Implicit-Particle (FLIP) [7, 84] simulator for incompressible,
inviscid fluids within the ΦFlow framework [38]. Recently, Sanchez-Gonzales et al. pro-
posed the Graph Network-based Simulators (GNS) framework, where they approximate
complex dynamics by learned message-passing on particle graphs [64]. Our second goal
of this thesis is to gain better understanding of the GNS architecture by training it on
data from our FLIP simulator, and to extend the GNS framework with new training
variants.

In chapter 2, we describe the Euler equations, the physical basis of our FLIP simulation.
We then explain the simulation approach of the FLIP method and provide a short intro-
duction to deep learning techniques and the graph network architecture. In chapter 3 we
summarize recent works in the field of learned simulators and graph networks. Chapter
4 describes the implementation of our FLIP simulator and demonstrates its physical
behavior and differentiability. Chapter 5 includes an evaluation of GNS models, which
were trained on data generated by our FLIP simulator. We first evaluate models trained
with artificial noise and boundary distance features as proposed by Sanchez-Gonzales
et al. [64]. We then propose a new multi-step loss and show that GNS models us-
ing this loss without any artificial noise, produce competitive results compared to the
previous models. We further show that GNS models trained on domains with obstacle
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Chapter 1 Introduction

boundaries, and without boundary distance features, have greater generalization cap-
abilities. Our evaluations indicate that the GNS models do not really learn physical
dynamics, but rather problem-specific correlations between input velocities and output
accelerations. In chapter 6 we describe possible improvements of our FLIP simulator
and propose possible future work with the GNS framework.
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Chapter 2

Theory

2.1 Fluid Simulation
This section serves as an introduction to the basic equations of fluid mechanics which
are used in this thesis, and gives an overview of possible numerical methods to discretize
and simulate these equations.

2.1.1 Fluid Mechanics
Fluid mechanics is governed by the Navier-Stokes equations [3]. However, for the sim-
ulation purposes in this thesis, the assumption of an incompressible and inviscid fluid
simplifies these equations to the so-called Euler equations. These can be derived from
two basic principles: The conservation of mass, leading to the continuity equation, and
Newton’s second law, leading to the balance of momentum. The derivations shown here
are mostly based on the text books by Chorin and Marsden [12] and Griebel et al.
[30].

To derive the continuity equation, one starts with a fixed region Ω containing a fluid
with a mass density ρ(x, t). The existence of the mass density is a simplification and
is called the continuum assumption, as the molecular structure of the fluid is neglected.
The mass of the fluid is then given by integrating this density over the region Ω:

m(Ω, t) =

∫
Ω
ρ(x, t) dV.

The principle of mass conservation can now be formalized as the equality between the
rate of mass increase within region Ω and the rate with which mass is crossing the region
boundary ∂Ω:

d

dt

∫
Ω
ρ dV = −

∫
∂Ω

ρ u · n dA. (2.1)
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Chapter 2 Theory

Here, u is the spatial velocity field of the fluid and n is the unit outward normal of the
region boundary ∂Ω. The divergence or Gauss theorem relates the flow through a bound-
ary of a volume with the divergence (the sinks and sources) within that volume:

∫
Ω
div(F) dV =

∫
∂Ω

F · n dA

Applying this theorem to equation 2.1, the right hand-side can be rewritten and one
derives

∫
Ω

[
∂ρ

∂t
+ div(ρu)

]
dV = 0

which holds for all fluid regions Ω and can therefore be simplified to the differential form
of the law of conservation of mass, the continuity equation:

∂ρ

∂t
+ div(ρu) = 0.

The simulations in this thesis only apply to liquids, which have a much lower compress-
ibility than for example gases [23]. This justifies the assumption of an incompressible
fluid which in turn ensures a constant mass density over time (ρ(x, t) = const). In this
case the continuity equation takes the simple form

div u = 0 (2.2)

To derive the equation of balance of momentum, one starts at Newton’s second law
(F = ma). The acceleration a of a fluid particle which moves along the trajectory
(x(t), y(t)) can be formalized as:

a =
d2

dt2
(x(t), y(t)) = d

dt
u(x(t), y(t), t)

Applying the chain rule yields

a =
∂u

∂x
ẋ +

∂u

∂y
ẏ +

∂u

∂t
=

∂u

∂x
u +

∂u

∂y
v +

∂u

∂t
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Chapter 2 Theory

where u and v are the components of the particles velocity u. Rewriting this equation
using the gradient operator leads to

a =
∂u

∂t
+ u · ∇u (2.3)

which can be rewritten again by defining the so-called material derivative:

D

Dt
=

∂

∂t
+ u · ∇

This definition can be interpreted as a connection of Lagrangian and Eulerian viewpoints
of the fluid. In the Lagrangian view, the fluid is treated as a particle system carrying
certain properties, whereas the Eulerian view considers fixed points in space (e.g. a
regular grid) and measures the fluid properties as rates of change at these points [9].
The material derivative includes the term ∂t to express the rate of change at a fixed
point and the term u · ∇ to account for the fact that the fluid is also flowing past
that fixed point. Thus, it represents differentiation following the fluid, and answers the
(Lagrangian) question of how fast a quantity is changing for a moving particle, by also
considering fixed points from the Eulerian view [9].

For the application of Newton’s law, one also needs to calculate the forces acting on
the fluid. These can either be forces of stress (e.g. pressure and internal friction) or
body forces which exert some force per volume (e.g. gravity or the magnetic force).
The stress forces at the boundary of a region can be represented using the stress tensor
σ. With the second assumption of an inviscid fluid (the first being that the fluid is
incompressible), internal friction of the fluid is neglected and the stress tensor can be
solely defined by the pressure function p(x, t). In case of viscous fluids, the stress tensor
would also contain a viscous parameter, leading to dynamic and kinematic viscosities
in the momentum equation. However, for the simulation purposes in this thesis the
assumption of an inviscid fluid is sufficient (reasons for this will be discussed in section
2.1.2) and the stress forces can be written as

S∂Ω = −
∫
∂Ω

p n dA = −
∫
Ω
grad p dV (2.4)

where the the divergence theorem provided the last equality. The body forces can be
calculated by integrating over the fluid region and taking into account b(x, t), the body
force per unit mass:

B =

∫
Ω
ρ b dV (2.5)
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Chapter 2 Theory

Putting it all together (i.e. combining equations 2.3, 2.4 and 2.5), one finally derives the
law of balance of momentum in its differential form:

ρ
Du

Dt
= −grad p+ ρ b (2.6)

Imposing the initial condition u = u0(x, y) at t = 0, which has to satisfy the continuity
equation 2.2, one can calculate the dynamics of the system (described by the quantit-
ies u, p and ρ) using the momentum equation 2.6. The domain in which the fluid is
defined has boundaries where certain conditions have to hold at all times. Thus, the
problem becomes an initial-boundary value problem. For the simulations in this thesis,
free-slip conditions are applied, meaning that the velocity components orthogonal to
the domain boundaries are zero while the tangential components are not affected (no
frictional losses at the boundaries). Thus, the Euler equations derived in this section are
equations 2.2 and 2.6, together with a constant mass density ρ(x, t) and the boundary
conditions:

u · n = 0 on ∂W (2.7)

2.1.2 Simulation Approaches
As the simplifications and assumptions for the equations in section 2.1.1 suggest, the
simulations in this thesis are not tailored for physical accuracy, but rather for realistic
visual behaviour which is sufficient for the main goal of learning fluid motion. This
section therefore summarizes simulation methods from the field of computer graphics.
Accurate physical simulations from the realm of computational fluid mechanics are out
of scope for this thesis.

In the computer graphics community there are two main simulation approaches based
on the aforementioned viewpoints: Eulerian grids and Lagrangian particles [84]. In
Eulerian methods, all variables of the fluid are stored at fixed grid points, together with
a fluid mask indicating where the fluid is located. An example would be the method from
Foster and Metaxas [25] which was the first grid-based 3D simulation implementing the
full Navier-Stokes equations. Eulerian grids provide a simple discretization and simplify
the calculations which ensure that the fluid satisfies the incompressibility constraint
in form of the continuity equation 2.2. However, simulations using explicit Eulerian
advection schemes can become unstable over time, forcing an upper boundary on the
time step size and interactivity [71].

Lagrangian methods store variables on the different particles which represent different
chunks of fluid. The variables are then carried along by moving the positions of the
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Chapter 2 Theory

individual particles, enabling simple, but accurate advection schemes using solvers for
ordinary differential equations (ODE). One popular technique for such fluid simulations
is smoothed particle hydrodynamics (SPH) which was originally developed for problems
in astrophysics [51]. SPH is not based on a grid but uses analytical differentiation of
interpolation formulae with which any function can be described by values at certain
points, the particle positions. While Eulerian schemes struggle with advection, Lag-
rangian methods have difficulties with the incompressibility condition (Equation 2.2),
often restricting the simulations to uniform particle spacings [84].

Combining strengths from both Eulerian and Lagrangian schemes, the Particle-in-Cell
(PIC) method was developed to handle advection with particles, while solving the in-
compressibility condition on a grid [33]. Grid point values are calculated as weighted
averages from nearby particles at each time step and are used for calculating the pres-
sure necessary for a divergence-free velocity field. Then, the grid point values are used
to calculate new particle values by interpolating from the surrounding grid points. The
particles get advected by simply moving their positions according to their velocities and
their values are again mapped to the grid for the next time step. In order to simplify
operations on the grid, the PIC method uses so-called staggered grids, which have been
proposed in the Marker-and-Cell method (MAC) [34]. By storing grid values at the cell
boundaries instead of the centers, central difference calculations (e.g. computing the
divergence or gradient) get simpler and more accurate [9].

Due to the repeated interpolation of grid points for particle values, the PIC method shows
strong numerical diffusion, resulting in undesirable smoothing of small-scale velocities.
This disadvantage has been solved by introducing the Fluid-Implicit-Particle (FLIP)
method [7]. The solution was to only map the change from the grid calculations back to
the particles instead of the total velocity values. At each time step, the particle values
are therefore only updated with the results from the grid calculations instead of getting
replaced by them. Since its initial proposal, a multitude of FLIP variants have been
developed. The Material Point Method (MPM) [73] extends FLIP to deformable, elastic
materials like for example snow [72] or sponges [58]. Other methods combine FLIP with
traditional grid-based solvers to reduce computation time and memory usage [22].

The simulations in this thesis are based on the FLIP method. To simulate inviscid,
incompressible fluids, the Euler equations (Equations 2.2 and 2.6) have to be solved.
One way to do this is to split these equations into multiple parts and solve each equation
separately [9]. The law of balance of momentum (equation 2.6) can be split into two
equations, one adding body forces and one adding stress forces while also satisfying the
incompressibility constraint.

∂u

∂t
= b

7



Chapter 2 Theory

∂u

∂t
= −1

ρ
grad p satisfying ∇ · u = 0 (2.8)

In order to satisfy the continuity equation 2.2 the fluid must only be moved in a
divergence-free velocity field. Thus, the sequence in which the equations get solved
matters and the advection must use the output of the grid calculations. In order to
ensure boundary conditions, the FLIP algorithm also corrects the positions of particles
inside boundaries, or obstacles, by shifting them to valid positions inside the domain.
Algorithm 1 shows the full FLIP procedure.

Algorithm 1 FLIP algorithm
1: Initialization of particle positions and velocities
2: for each time step do
3: Map particle values to staggered grid to get the velocity field ui
4: Add forces (e.g. gravity) to ui
5: Subtract pressure gradient from ui and receive divergence-free velocity field uf
6: Map uf − ui to each particle by interpolation
7: Advect particles and their values on the grid using an ODE solver
8: Push particles outside of boundaries or obstacles
9: end for

The above assumption of an inviscid fluid can be justified by the fact that our simulations
are tailored to liquids where viscosity plays only a minor role, in contrast to highly viscous
materials, such as honey. Furthermore, many numerical methods introduce dissipation
effects which could be physically interpreted as viscosity [9]. Thus, adding viscosity
would only have a negligible effect and make the equations more complex.

In order to solve equation 2.9 and calculate the pressure, it can be discretized using finite
differences with a small time step dt [9]:

un+1 = un − dt · 1
ρ
grad p satisfying ∇ · un+1 = 0

By applying the divergence on both sides this can be rewritten to:

∇ · un+1 = ∇ ·
(
un − dt · 1

ρ
grad p

)
!
= 0

8



Chapter 2 Theory

Thus, one has to solve the following system of linear equations:

∇ · un = dt · 1
ρ
∆ p (2.9)

The pressure field p is hereby processed by the laplace operator ∆ = ∇ · ∇. The
implementation of the simulation in this thesis is discussed in detail in section 4.1.

2.2 Supervised Deep Learning
Due to a combination of advances in parallel computer hardware and efficient imple-
mentations of learning algorithms within well-designed software frameworks [55, 1], deep
learning [67, 47, 28] has now a central role in machine learning and the broader context
of artificial intelligence. After their initial success in computer vision [45], deep learning
models have been applied in multiple fields of science, including climate science [60],
biology [69], chemistry [27] and physics [17]. Geometric deep learning [10] summarizes
the efforts to generalize deep learning models to non-Euclidean domains, where different
models have successfully been applied to point clouds [31], meshes [32], graphs [65] and
manifolds [13].

This chapter acts as a short introduction to deep learning with a focus on supervised
learning. Section 2.2.1 states the general goal of supervised learning and introduces
common optimization algorithms. Section 2.2.2 then describes common deep learning
building blocks and discusses inductive biases and priors. Section 2.2.3 provides a more
detailed introduction to graph networks. General introductions to deep learning can be
found for example in the textbooks from Goodfellow et al. [28] or Nielsen [53].

2.2.1 Learning Goal and Algorithms
The formalism in this section is mostly based on the review from Carleo et al. [11]. In
machine learning, many problems can be described by the form y = f(x) where x are
inputs to some continuous function f which produces the outputs y. An example would
be an image classification problem where the inputs x are images of human faces and
the outputs y are the names of the persons in the images. The function f would then
map each image to the corresponding name of the person in it. In supervised learning,
the goal is to approximate the function f by learning from pairs of inputs x and their
corresponding outputs y. A first step in approximating f is to express the function
by a set of parameters Θ, leading to the parameterized function fΘ. This is done by
defining deep learning models which will be described in more detail in section 2.2.2. By
designing a so-called loss function L(fΘ(x),y) one can set the optimization goal for the

9
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parameters Θ, so that fΘ(x) ≈ f(x) when L is minimized. During the training process,
the loss function is calculated for each input-output pair i and the parameters Θ get
trained to minimize the mean loss

L =
1

n

n∑
i=1

Li(fΘ(xi), yi)

where n is the size of the training set. For parameter optimization, variants of the
gradient descent algorithm are a popular choice. In this algorithm, the parameters get
updated according to the formula

Θt+1 = Θt − η∇ΘL. (2.10)

Thus, the weights get iteratively adjusted in the direction of the steepest descent of the
loss where the step size η is called learning rate. The loss gradient is efficiently calculated
using the so-called backpropagation algorithm [62] which is at the core of most deep
learning applications. Details for this algorithm can be found in [53]. In order to speed
up the training procedure, the loss can be calculated by only using subsets of the total
training set, so-called mini-batches. When doing so, the algorithm is called stochastic
gradient descent (SGD) which is a commonly used technique in deep learning [53]. Using
small samples, the true loss can be estimated much faster than calculating it using the
full training set.

The choice of the loss function L depends on the task at hand. For classification tasks, the
so-called log loss (cross entropy loss) is most commonly used, whereas Lp functions like
L1 and L2 are typically considered for regression problems. However, it has been shown
that their use in classification problems is also reasonable [42]. However, the loss function
can also be used to force certain priors upon the architecture of deep learning models.
The work from Raissi et al. [56, 57, 81] shows examples for incorporating physical
and biological laws into the loss functions of architectures in form of partial differential
equations. Recently, deep learning architectures have been developed to respect physical
symmetries and learn exact conservation laws from data by choosing loss functions which
closely follow mathematical formulations of classical mechanics [29, 16]. Thus, the choice
of the loss function has a significant effect on the outcome of the optimization procedure
and is setting the learning goal of the model.

2.2.2 Deep Learning Architectures and Priors
A simple deep learning model for the parameterization of some continuous function f
would be a multi-layer perceptron (MLP). A fully connected MLP [61] can have multiple
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layers of so-called neurons, where each neuron is connected to all neurons of the previous
and subsequent layer. An example of such an MLP is shown in figure 2.1. Layers between
the input and output layers are called hidden and if there are multiple of such layers
the neural network is called deep. The i-th layer of an MLP transforms its inputs x
according to

g(i)
(
w(i)x+ b(i)

)
where w(i) and b(i) stand for the trainable parameter tensors of the i-th layer. The
so-called activation function g(i) provides the layer with a non-linearity, common choices
are variants of the rectified linear unit (ReLU), sigmoid or hyperbolic tangent (tanh)
functions, exponential linear units (ELUs) [54] or sinusoids (i.e. sin(x)) [56].

Figure 2.1: MLP with an input layer consisting of three neurons, one hidden layer with 4 neurons
and one output layer with one neuron.

The work from Raissi et al. [56, 57, 81] shows examples for inserting certain priors (e.g.
physical laws) into the loss function of the training procedure. Such priors can also
be included into the architectures themselves and are then called inductive biases [5].
These inductive biases can introduce additional assumptions about a learning problem
into an architecture and provide a model with a tendency towards certain solutions,
independent of the given data [50]. For example, fully connected neural networks have a
weak inductive bias as all neurons can interact with each other and determine the output
in a similar manner [5]. Other deep learning building blocks, such as convolutional layers
[26, 46] have an inductive bias towards translational invariance and locality, which is
useful when analysing images. A general class of architectural inductive biases are so-
called relational biases [5] which lead to an architecture called graph network, described
in the next section.
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2.2.3 Graph Networks
Battaglia et al. [5] name combinatorial generalization as one of the core building blocks
of human intelligence. They argue, that humans understand the world in compositional
terms, meaning that they understand complex systems as compositions of entities which
interact with each other. For example, considering Lagrangian fluids, the fluid particles
can be seen as entities and the forces between the particles as their relations. Battaglia
et al. [5] formalize the principle of combinatorial generalization as a relational bias (see
section 2.2.2) and propose an implementation of this bias in form of a generalized version
of graph neural networks [65] which they call graph network (GN). More information
about graph neural networks can be found in the reviews [10, 83, 80].

The architecture of a GN operates on graphs, which consist of nodes connected by
edges. As mentioned, the nodes could for example be fluid particles and the edges could
represent the forces the particles exert onto each other. A GN takes such a graph and
processes it with different update and aggregation functions. Update functions alter node
and edge features, while aggregation functions summarize features from multiple nodes
or edges. Battaglia et al. [5] formalize such uses of update and aggregation functions
into the GN framework. A given graph structure is formalized as a 3-tuple G = (u, V, E).
u encodes global attributes of the graph, for example the total energy of a system. V
is the set of nodes where the attributes of the i-th node are encoded as vi. E is the set
of graph edges where the attributes of the k-th edge are encoded as ek. A graph is said
to be directed, if it contains only one-way edges which connect a sender node (vs) with
a receiver node (vr). Figure 2.2 shows an abstract example of a directed graph with 5
nodes.

Figure 2.2: Update mechanism of an Interaction Network [4] applied to a simple, directed graph
with five nodes. Red colors indicate the variables which get used in the next update step, green
colors indicate which variables have been updated. For visualization purposes the update and
aggregation functions are only applied to one edge and one vertex.

Formally, a GN block consists of update functions, denoted by φ, and aggregation func-
tions, denoted by ρ. The order and use of update and aggregation functions can vary
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and are often tailored to specific problems. For our deep learning experiments in chapter
5, we make use of one specific variant, the Interaction Network, which was first proposed
by Battaglia et al. [4]. The mechanism of this GN variant can be formalized as the three
equations 2.11 and is shown in figure 2.2.

e′k = φe (ek,vrk ,vsk)

e′i = ρe→v
(
E′

i

)
v′
i = φv

(
e′i,vi,u

) (2.11)

At first, the GN updates single edges by applying its edge update function φe to the
edge features ek, sender node features vsk and receiver node features vrk . For each node,
the GN then summarizes the features of all incoming edges (E′

i) with its aggregation
function ρe→v. Finally, it updates each node by applying its node update function φv

to the edge feature summary e′i, the node features vi and the global graph attributes
u. Descriptions of more general GN blocks can be found in the original description by
Battaglia et al. [5].

In general, the actual implementation of the update and aggregation functions can vary
and does not necessarily include any deep learning building blocks. However, in case of
the interaction networks, φe and φv are implemented as separate MLPs which are reused
for all edges and nodes respectively. The aggregation function ρe→v is implemented as
an elementwise sum. By reusing the same MLPs for multiple edge and node updates,
GNs have a bias towards the aforementioned combinatorial generalization. Graphs often
consist of similar entities, like for example fluid particles which exert similar forces onto
each other. Training GNs on such graphs provides them with strong generalization
capacities to larger graphs with similar entities, which is the key effect of combinatorial
generalization [63, 4].

Furthermore, multiple GN blocks can be composed to form complex architectures. For
example, one could construct an architecture divided into an encoder, processor and
decoder, where the processor consists of a sequence of GN blocks (e.g. interaction
networks). One such configuration has proven effective in learning complex dynamics
such as fluid motion [64] and is used for our deep learning experiments in chapter 5.

2.3 Differentiable Physics
In recent years, the intersection of machine learning, automatic differentiation and phys-
ical sciences became a very active field of research [14]. High quality automatic differen-
tiation libraries like Autograd [49], PyTorch [55], Tensorflow [1] or JAX [8] allowed the
integration of classical simulators into deep learning systems [76, 66] and initiated the
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development of differentiable physics solvers. These solvers are often used for solving
inverse problems in various fields, like for example fluid or molecular dynamics [66, 79].
When calculating gradients of simulation parameters, regular solvers can often only
provide approximations by finite differencing. Solvers using automatic differentiation
resolve this issue by efficiently computing analytic derivatives with respect to arbitrary
inputs [38]. Examples for such solvers are ΦFlow [38], a framework-independent solver
providing multiple physics scenarios, DiffTaichi [40], which extends the Taichi program-
ming language [39] with automatic differentiation capabilities and JAX MD [68], which
uses JAX to provide multiple physics simulation environments. While most research
into the combination of automatic differentiation and simulations resulted in highly spe-
cialized solutions [6, 75, 41, 21], these solvers aim to provide general purpose simulation
environments which can be easily integrated into other systems to either guide train-
ing [38], solve optimization problems [66] or complement parts of classical solvers with
learned components [76].

We integrate our FLIP simulation into the ΦFlow solver [38]. ΦFlow was designed in
a framework-independent way, providing support for multiple automatic differentiation
backends. Its operations make use of the aforementioned staggered grids [34] while
implementing various differential operators (gradient, divergence, curl, laplace). Fur-
thermore, the framework provides methods for solving Poisson problems or advection
steps by using algorithms like the conjugate gradient [37] or semi-Lagrangian advection
[71].
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Chapter 3

Related Work

Our deep learning architectures are based on recent work from Sanchez-Gonzales et al.
[64], who proposed a framework called Graph Network-based Simulators (GNS) which can
learn to simulate the dynamics of different materials like water and sand. The authors
apply the GNS to datasets generated by classical simulators using the aforementioned
SPH [51] and MPM [73] methods. They also use another technique, called position-
based dynamics (PBD) [52], which directly predicts and works with position changes
instead of focusing on forces and accelerations like the former methods. Their work is
summarized in chapter 5 and is based on the long-term effort of using graph networks
to build data-driven simulators [4, 27, 5, 63, 48].

More broadly, graph networks have become popular in natural sciences such as collider
physics [70], astrophysics [17] or chemistry [27]. Another important area of study is
making graph networks more understandable, e.g. by reformalizing them using symbolic
regression [15, 17] and by providing tools for analyzing these systems [82], which are
currently considered as black boxes.

Another, non-graph-based technique for learning fluid dynamics is the work from Um-
menhofer et al. [77] where the authors represent fluids as point clouds and apply network
architectures with continuous convolution layers to learn the mechanics. Continuous
convolutions were also used by Schenck et al. [66], who implement differentiable fluid
dynamics layers which can be integrated into deep learning systems. Continuous con-
volutions on point clouds can be seen as an independent research branch in the field of
geometric deep learning. An overview of different methods is given in the review by Guo
et al. [31].
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Chapter 4

Differentiable FLIP Simulation for ΦFlow

This chapter describes the implementation of our differentiable FLIP simulation for
the second version of ΦFlow. Section 4.1 explains the implementation details. Section
4.2 shows simulation examples and verifies the expected behaviour of the simulation in
different scenarios. Section 4.3 demonstrates the differentiability of the simulation in
simple optimization experiments.

4.1 Implementation
As introduced in section 2.3, the ΦFlow solver is a differentiable physics solver which can
be used to implement physics scenarios in different backends (SciPy [43] and Numpy
[35], PyTorch [55], TensorFlow [1] or JAX [8]). Our first contribution is to extend this
framework with a differentiable FLIP simulator. We update an existing FLIP simulation
from the first version of ΦFlow and make it compatible to the second version which is
currently under development. Furthermore, we eliminate known bugs and extend the
code to support obstacles and inflows.

Using the Domain object from ΦFlow, the physical properties of the simulation space
can be initialized with free-slip boundary conditions as defined by equation 2.7. The
initial particle distribution can be specified using the ΦFlow Geometry object to generate
a binary mask marking the grid cells which should contain particles. As discussed by
Zhu and Bridson [84], assigning 8 particles to each marked grid cell prevents voids in
the fluid while avoiding too much noise. Thus, 8 particles are generated in each marked
cell by default. Their initial x and y positions can be chosen from a uniform distribution
within each cell or can be set to the cell centers which is useful in later symmetry tests
(section 4.2). Their initial velocity can be specified by a single velocity vector which is
then broadcasted to all particles. Obstacles can be initialized with the ΦFlow Obstacle
class, specifying their extends and a rotation angle.

The simulation itself is implemented as described in algorithm 1. Fluid particles are
represented using the PointCloud class of ΦFlow which provides functions to map particle
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Chapter 4 Differentiable FLIP Simulation for ΦFlow

values to the staggered grid of the domain and also to sample particle values from the
grid. After interpolating the velocity grid from the particle velocities, possible forces are
added to the velocity grid by Euler integration. One standard force tensor Tforce is for
example gravitational acceleration in negative y-direction, where dt is the time-step of
the simulation:

vForce = v + dt ·Tforce

Next, to satisfy the continuity equation 2.2, that is to ensure a divergence-free velocity
field for the advection step, the pressure is calculated by solving the system of linear
equations derived in equation 2.9. Therefore, the divergence of the velocity field (which
was already updated with the force tensor) gets calculated using the ΦFlow divergence
operator for staggered grids. Using the divergence of the velocity field, the pressure is
computed by the high-level linear equation solver of ΦFlow which automatically generates
a sparse matrix from the given equation and solves the system by making use of the con-
jugate gradient method [37]. Calculating the pressure gradient with the corresponding
ΦFlow operator and subtracting it from the velocity field results in the divergence-free
velocity. A FLIP simulation updates the particle velocities with the change between
the initial and the divergence-free velocity field (as explained in section 2.1.2). Thus,
only the difference between the divergence-free velocity field and the initial velocity field
are interpolated and added to the particle velocities by again making use of the ΦFlow
sampling mechanism between staggered grids and the PointCloud class. When mapping
grid velocities to particles, the particle values are interpolated from neighboring grid cell
values. As the grid velocities are only nonzero for cells which hold particles, this can
lead to deteriorating liquid shapes as the particles at the borders of the shape will get
slowed down due to the interpolation from zero velocities outside of the liquid shape.
Figure 4.1 shows an example of this effect on the left, where border particles (e.g. the
red particle) interpolate from zero velocities and are therefore slower than inner particles
(e.g. the green particle). This leads to a deterioration of the liquid shape. To avoid
this, we implement an extrapolation method which extrapolates the grid velocities, so
that border particles don’t interpolate from zero velocities, but instead have the same
velocities as inner particles, shown schematically in figure 4.1 on the right.

The particles are advected using a fourth-order Runge-Kutta scheme, shifting the
particles to their new positions. Using this fourth-order Runge-Kutta scheme at high
velocities can also lead to shape deterioration when sampling higher-order component
velocities from grid values outside of the liquid shape. To avoid this, we extend the
Runge-Kutta scheme with velocity-dependent extrapolation for each component.

Particles which were falsely advected into the domain boundary, or into obstacles, are
moved to valid positions within the domain after each simulation step. For this function-
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Figure 4.1: Effect of extrapolation on falling liquid shapes for one staggered grid component. Dots
represent particles, blue grid cells have nonzero velocities, white grid cells have zero velocities.
Particles interpolate their new velocity values from the neighboring grid cells, indicated by the
red and green arrows for 2 particles. Dashed lines indicate the position change after advection.

ality, we extended the ΦFlow Box class by shift functions which detect particles inside
the geometry domain, and push them towards the nearest border. Finally, possible new
particles are added at their corresponding positions by concatenating PointCloud ob-
jects. Then, the next iteration of the simulation starts using the updated position and
velocity values.

Figure 4.2 shows three examples of liquid simulations with different scenarios. Links for
videos of these examples can be found in table A.1 in the appendix. We generate the
simulations with a time step of 0.1 seconds using a 64× 64 domain. The first example,
showing a block falling into a pool, has a total of 11, 520 particles. The obstacles shown in
the second and third example of figure 4.2 are represented by points only for visualization
purposes and are actually implemented on grid level.

To enable the execution of our simulation in all of the ΦFlow backends, we add additional
scatter functions in PyTorch and TensorFlow. All our additional simulation methods
are implemented for a variable number of dimensions, allowing the FLIP simulator to
also work in 3 dimensions. Our code, demos and an additional test suite for the FLIP
simulations are available in the ΦFlow GitHub repository.

4.2 Physical Verification of the FLIP Simulation
Having demonstrated our FLIP simulation in different scenarios we now verify it in two
more aspects. First, we inspect its behaviour when artificial viscosity is added. Second,
we measure its ability to retain a symmetric state throughout a simulation.

As described in section 2.1.2, the PIC method produces simulations with strong numer-
ical diffusion which leads to smoothing of small-scale velocities. The FLIP method uses
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Figure 4.2: Three example scenarios generated by our FLIP simulator. Obstacles are implemented
on grid-level but are visualized as point clouds. Time increases from left to right.

the velocity difference instead of the total velocities as updates to the particle velocities.
It therefore shows less diffusion and higher level of detail. We have implemented our
fluid simulation in such a way that the user can switch between the FLIP and PIC meth-
ods. Figure 4.3 shows a qualitative comparison of both simulation approaches. Links
to videos and further examples can again be found in table A.1 in the appendix. As
expected, and in agreement with the findings of Zhu and Bridson [84], the smoothing
effect of the PIC method is clearly visible in contrast to the result of the FLIP method
which is rich of small-scale velocities. The smoothing effect of the PIC method can also
be interpreted as numerical viscosity. Often, FLIP and PIC are combined by a weighted
average to adjust the amount of this numerical viscosity [84].
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Figure 4.3: Comparison between FLIP and PIC simulations and a mixture of the two methods.
Numbers indicate time steps of the simulations.

Figure 4.4: Symmetry experiment. The left side shows the simulation state at different frames,
indicated by the number at the top. The diagram on the right shows the time evolution of the
MSE error between particle positions of both sides of the domain. Red crosses indicate frames
where the simulation state is shown on the left.
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When choosing a symmetric scenario, one would expect the simulation result to be
symmetric as well. In order to test the implemented simulation in this regard, we
conduct a symmetry test of which the results are presented in figure 4.4. To ensure
initial symmetry, we sample the particles at the centers of the underlying grid cells,
forming a block in the middle of the domain. The right side of figure 4.4 shows the
time evolution of the mean-squared-error (MSE) between the particle positions on both
sides, until the number of particles on both sides differs. From the time evolution of the
MSE and the corresponding images at the respective frames, it becomes clear, that the
simulation is indeed nearly symmetric until frame 30, showing only negligible differences
between the particle positions on both sides. However, due to numerical errors which
get accumulated over time, the MSE increases exponentially and the position differences
become noticeable from frame 30 on, until the first particle changes sides at frame 35.
Aside from numerical errors, fluid motion is chaotic in itself. The symmetry violation
after a certain amount of time is therefore expected. Table A.1 in the appendix contains
links to videos of the example in figure 4.4 and others.

4.3 Demonstration of the Differentiability of the FLIP
Simulation

To demonstrate the differentiability of our FLIP simulation, we conduct example optim-
ization experiments using PyTorch. The upper left of figure 4.5 shows the initial state.
The experiment starts with a liquid block, which gets transformed by 20 steps of the
FLIP simulation. The initial particle positions are then optimized to approximate the
target positions shown in the lower right of figure 4.5. The optimization is done using
gradient descent (learning rate of 1) and the L2 loss between the transformed positions
of the initial and target states. As shown by the intermediate steps, the optimization
converges within 15 cycles, transforming the initial liquid block into the two spheres of
the target. The initial increase of the L2 loss from 14,129 to 18,141 can be explained by
the chaotic nature of fluid dynamics which might cause the particles to get advected in
counterproductive directions during the 20 steps of FLIP simulation. Figure 4.6 shows
another example of this problem. The optimization shown in the left column stops im-
proving at a relatively high loss and is unable to approximate the target sphere. Again,
this can be explained by the fact that shifting the positions by the gradients retained
by backpropagation would only improve the current state of the advected fluid, but not
the fluid state after applying the FLIP simulation to the new particle positions.

The optimization experiment in the right column of figure 4.6 shows another complication
when solving inverse problems. The optimization reaches a relatively small loss, but
achieves this without approximating the actual sphere shape of the target. In this case,

21



Chapter 4 Differentiable FLIP Simulation for ΦFlow

the optimization problem has multiple solutions and the optimization is unable to escape
one of the local minimums.

Figure 4.5: Optimization of particle positions with gradient descent through the differentiable
FLIP simulation. The green boxes show the initial particle positions, the red boxes show the
particle positions after 20 steps of the FLIP simulation. The target of the optimization and its
initial positions are shown in the shaded boxes. The optimization steps are indicated by the
numbers in the green boxes, the red boxes show the L2 loss of each step.
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Figure 4.6: Two optimization experiments with problematic outcomes. Grey blocks indicate the
initial states of the liquid shapes. Green boxes contain the particle positions before 20 steps of
the FLIP simulation, the red boxes show particles after simulating. The shaded boxes contain
the optimization target and its initial particle positions.
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Chapter 5

Learning to Simulate

This chapter describes our deep learning experiments. We adopt the Graph Network-
based Simulators architecture from Sanchez-Gonzalez et al. [64], which is described in
section 5.1, and train it on the dynamics of the FLIP simulation from section 4.1. Section
5.2 describes the dataset of FLIP simulations which was used for the experiments and
section 5.3 explains different learning scenarios and model variants in which the GNS
was applied to this dataset. Section 5.4 then compares these scenarios and models
with different metrics, and inspects some of their generalization capabilities in more
detail.

5.1 Learning FLIP Simulations with Graph Network-based
Simulators

Sanchez-Gonzalez et al. [64] compose several GN blocks (described in section 2.2.3) into
an encode-process-decode configuration which they name Graph Network-based Simulat-
ors (GNS). They demonstrate that the GNS is capable of learning complex dynamics
of different materials such as fluids and sand. Figure 5.1 displays the GNS architecture
schematically. On a high level, the GNS is a parameterization of dynamics which map
the current state of the world to a future state. In case of the FLIP simulation, the dy-
namics are described by fluid dynamics, summarized in section 2.1.1. In the Lagrangian
view, the state of a fluid can be described in terms of single particles which interact with
each other. The GNS takes the positions of these particles from the FLIP simulation as
input and uses its encoder to transform these positions into a graph, where each node
corresponds to a particle, and edges indicate particles interacting with each other. For
each particle, edges are added to all neighboring particles within a certain connectivity
radius, which is a hyperparameter of the GNS architecture. The node features are cal-
culated by an MLP which takes the five previous particle velocities, the particle type
and its distance to the domain boundaries as input, and outputs a latent vector of size
128. The edge features are calculated by another MLP, which takes the relative dis-
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Figure 5.1: Schematic overview of the Graph Network Simulator (GNS) architecture.

tance between the connected nodes as input and produces another latent vector of size
128.

The particle interactions are then computed by performing message passing on the res-
ulting graph. This is done by a sequence of 10 different interaction networks, where
each network uses the mechanism defined in equation 2.11 (without the global graph
attribute) [5]. All interaction networks have residual connections between the node and
edge attributes at input and output. The update functions of the interaction networks
are implemented as MLPs and the aggregation function as an elementwise sum (as de-
scribed in section 2.2.3). The parameterization of the fluid dynamics thus takes the form
of message-passing on a graph, performed by MLPs.

The resulting graph is then used to map the input state, the particle positions, to the
next state. After the message passing, the GNS first uses its decoder, another MLP, to
transform the node features into particle-wise accelerations. These accelerations are then
used to calculate future velocities and positions for each particle using Euler integration
(see figure 5.1).

All MLPs consist of two hidden layers with ReLU activations and size 128. The MLPs
of the encoder use LayerNorm [2] after their output layer. A detailed analysis of the
hyperparameters of the GNS architecture (e.g. number of velocities to calculate node
features, number of interaction networks) can be found in the work of Sanchez-Gonzales
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et al. [64]. They implemented the GNS architecture in TensorFlow 1 [1], using Sonnet
1 [19] and the Graph Nets library [20]. The implementation was published on GitHub
and is also used to apply different variants of the GNS to the FLIP simulation of this
thesis, as described in section 5.3.

5.2 FLIP Dataset
To apply the GNS architecture to the FLIP simulation from section 4.1, we first use
our simulator to generate training, validation and test sets. Table 5.1 summarizes the
parameters which we use to generate the training and validation sets. The training set
consists of 2000 simulations with 400 frames each, using a time step of 0.05 s. The scenes
are randomly generated and can contain liquid blocks, elongated obstacles and a liquid
pool at the bottom. Figure 5.2 shows initial simulation states as examples of the training
set. The validation set consists of 20 simulations with length 400 and is generated with
the same random distribution as the training set, using a different random seed. We
generate our test set manually to evaluate the behaviour of the models in 10 challenging
scenarios. Examples from the test set are shown in figure 5.3.

Parameter description Value
Trajectory duration (steps) 400
Time step (s) 0.05
Maximum number of particles 1300
Domain size 32×32
Probability for pool 0.3
Pool height [3, 8]
Block size [2, 20]
Probability for multiple blocks 0.3
Number of blocks if there are multiple [2, 3]
Probability for obstacles 0.8
Number of obstacles [1, 5]
Obstacle length [2, 20]
Obstacle rotations [0, 90]
Probability for initial velocity 0.3
Initial velocity range [-5, 5]

Table 5.1: Parameter specifications for dataset generation. Tuples indicate ranges from which
values were drawn randomly. The use of some of the parameters is dependent on the corres-
ponding probabilities (e.g. number of obstacles is only considered if probability for obstacles is
met).
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Figure 5.2: Simulation examples from our training set.

Figure 5.3: Simulation examples from our custom-designed test set.

Sanchez-Gonzales et al. [64] normalize all input and target vectors elementwise to zero
mean and unit variance. Thus, we calculate the dataset statistics online during data
generation and use them later for normalization during training and inference. Due to
memory constraints, we limit the number of particles in each FLIP simulation to less
than 1300. All trajectories are generated on domains of size 32 × 32 and scaled to size
0.8× 0.8 with positions laying between 0.1 and 0.9.

The training set used by Sanchez-Gonzales et al. [64] is mostly generated by simulators
based on the Material Point Method (MPM, see section 2.1.2). Sanchez-Gonzales et
al. show that the connectivity radius is one of the most important hyperparameters of
the GNS architecture. Their experiments indicate that greater connectivity radii yield
lower errors. As explained in their work, larger particle neighborhoods enable long-range
communication among the particles, supporting the message passing which applies the
dynamics. However, this communication benefit stands in trade-off with the amount
of computation and memory, which increases with larger radii due to the size of the
graphs.
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Sanchez-Gonzales et al. use a connectivity radius of 0.015 on a domain of size 0.8× 0.8.
Using this connectivity radius to train the GNS on FLIP trajectories yielded unstable
results where the fluid blocks were torn apart within the first few time steps. Instead,
a higher connectivity radius of 0.03 was necessary in order to produce physical traject-
ories. Figure 5.4 shows the time evolution of the distribution of neighboring particles
(averaged over 50 simulations), using a connectivity radius of 0.03 for the FLIP and
MPM WaterRamps dataset from [64]. The left side of figure 5.4 shows that the neigh-
bor number in our FLIP simulations drops at around frame number 50 indicating that
the liquid blocks splash at the bottom. After that initial drop, the mean number of
neighbor particles (thick red dots) stays nearly constant. This is expected due to the
incompressibility constraints of the simulation. For the MPM trajectories (figure 5.4 on
the right), the mean number of neighbor particles slightly increases, indicating that the
fluid gets compressed over time. This enables long-range communications with a smaller
radius. The maximum number of neighbor particles differs strongly between FLIP and
MPM simulations, reaching higher values in the MPM case. This further indicates that
even a low connectivity radius enables long-range communication between particles in
the MPM case while a higher radius is required in case of our FLIP dataset.

Figure 5.4: Distribution of neighbor numbers for the connectivity radius 0.03 at different time
steps, averaged over 50 dataset samples. The left side shows results for the FLIP dataset, the
right side shows results for the MPM WaterRamps dataset used in [64]. The thick red dots mark
the mean value of neighbor numbers. The distribution was interpolated between values at the
positions of the thin red dots. The color indicates the number of particles with the respective
number of neighbors.
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5.3 Learning Variants
Sanchez-Gonzales et al. [64] optimize the GNS parameters Θ using the L2 loss

L =
∥∥p̈t

GNS − p̈t
GT

∥∥2 (5.1)

which compares the predicted accelerations (the outputs of the GNS) with the corres-
ponding ground truth (GT) accelerations at time step t. A trained GNS can then be
used to generate longer simulation rollouts by using the GNS outputs as its new inputs
for the next time step. However, due to the complex mechanics and imperfect optimiz-
ation, the GNS would then accumulate its own error over time. With the loss defined in
equation 5.1 the GNS model is only trained on one-step data and is therefore not trained
for handling this accumulated error. One countermeasure used by Sanchez-Gonzales et
al. [64] is to corrupt the model input during training with artificial noise, which ideally
matches the noise produced by the model during rollout generation.

First, we verify the capabilities of the GNS framework by training it on our FLIP dataset.
Except for the connectivity radius described in the last section, we train the first GNS
(named 1-step-noise, 1sn) with the same procedure as used by Sanchez-Gonzales et al.
[64]. Additionally, we train another GNS (named 1-step, 1s) without the additional
artificial noise.

As a next step, we implement an alternative to the artificial noise. This alternative uses
a loss function which spans over more than one step and is described as

L =
1

n

(∥∥p̈t
GNS(p

t−1
GT )− p̈t

GT

∥∥2 + n∑
i=1

∥∥p̈t+i
GNS(p

t+i−1
GNS )− p̈t+i

GT

∥∥2) (5.2)

where n is the number of additional steps using the GNS positions as input for the
next prediction. The GNS first takes the five previous ground truth velocities as input
(pt−1

GT ), outputs the particle-wise accelerations and calculates the new velocities and
particle positions. In the next step, it takes the four previous ground truth velocities and
the newly predicted velocities as input (pt+i−1

GNS ) and calculates the next velocities which
replace another ground truth velocity in the next step. This way, the model is constantly
confronted with its own error which should improve its error mitigation capabilities
during rollout generation. Due to memory constraints, we test this alternative only
with n = 1. We optimize one GNS using this loss from scratch (named 2-step-scratch,
2ss) and another one by initializing it using pretrained weights from the 1-step model
described above (named 2-step-initialized, 2si).

As described in section 5.1, the node features in the graph encoding are calculated by
an MLP using the five previous velocities, the particle types and the distances to the
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domain boundaries as input. However, giving the GNS information about the domain
boundaries restricts its generalization capabilities to the domain it has seen during train-
ing. An alternative which we explore in this thesis is to model the domain boundaries
as obstacles and to remove the additional domain boundary distances from the node
feature calculation. This alternative has two advantages. First, the model is not re-
stricted to any specific domain, but operates solely on the interaction between fluid and
obstacle particles. Second, the model sees more interactions between fluid and obstacle
particles during training, which might improve its capabilities even further. We train a
fifth model on a new version of our FLIP training set where we represent the domain
boundaries as obstacle particles. We train this model with artificial noise, using the loss
from equation 5.1 and name it 1-step-noise-bounded (1snb).

We optimize the parameters of our GNS models with the Adam optimizer [44] and a
batch size of 2. The learning rate is decreased exponentially from 10−4 to 10−6. We
adopted this optimization procedure from Sanchez-Gonzales et al. and use it for all
experiments in this thesis.

5.4 Quantitative Comparison
To compare the model variants from section 5.3 quantitatively, we use 4 different met-
rics. The first metric is the particle-wise mean-squared error of one-step acceleration
predictions (MSE-acc 1) as defined in equation 5.1. The second metric (MSE 20) is the
MSE averaged across time, particles and spatial dimensions of 20 frames, taken at each
20 steps of the full 400-step rollouts. This metric indicates the model performance at
different stages of the FLIP trajectories (e.g. the falling liquid block in the beginning
or the sloshing liquid at the bottom of the domain at later time steps). The third met-
ric (MSE 400), is the MSE averaged across time, particle and spatial dimensions, but
applied to the full rollouts of length 400.

Evaluating rollouts solely with particle-wise MSE can be misleading. Considering two
particles A and B, the MSE could be high if the model predicts particle A at the po-
sition of particle B and vice versa, even so the particle distributions of prediction and
ground truth match. Due to the chaotic nature of fluid motion, the MSE can therefore
be misleading and one might favour a distributional metric, which is invariant under
particle permutations. Therefore, we evaluate the model variants from section 5.3 with
a fourth metric (EMD) using optimal transport (OT) and the earth mover’s distance or
Wasserstein metric [78, 18].
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The optimal transport problem describes an optimization problem of the form

dM (r, c) = min
P∈U(r,c)

∑
i,j

PijMij . (5.3)

Here, r and c describe the probabilistic weights (sum to 1) of all particles in the source
and target distribution and U(r, c) is the set of positive n×m matrices defined by

U(r, c) =
{
P ∈ Rn×m

>0 | P1m = r, P>1n = c
}
.

M is the cost matrix, which in case of a fluid with n particles has the size n × n and
contains the particle-wise distances. The optimization problem, described by equation
5.3, is to find the Wasserstein distance dM (r, c) which is calculated by using the element
of U(r, c) which yields the lowest distance between the particle distribution of ground
truth and prediction, measured by multiplying it with the cost matrix M . This distance
is also called the earth mover distance (EMD). This metric therefore relates each particle
of the predicted particle distribution to its nearest neighbors in the target distribution
and is invariant under particle permutations. For our evaluations, we calculate the
Wasserstein distance using the Python Optimal Transport (POT) library [24].

We evaluate the performance of each model on the validation set during training. Figure
5.5 shows exemplary screening results using all four metrics for the 1-step-noise model
variant described in section 5.3. As the MSE-acc 1 is calculated in the same way as
the loss with which this model was trained (equation 5.1) this metric shows a stable
downwards trend with increasing number of training steps. The MSE 20 shows a similar
behavior as it only includes 20-step rollouts and is still quite similar to the training loss.
The MSE 400 and EMD metrics produce relatively noisy screenings which still show a
strong downwards trend. The increase in noise is explained by the fact that the model
is not directly optimized for the tasks measured by these metrics. Due to the chaotic
weight updates within the network during training, small updates for the optimization
with the one-step loss can have large impacts on the performance in the full trajectory
rollout task.

To favour models which have a high performance on generating full-scale rollouts, we
use the MSE 400 to choose model checkpoints for further analysis and apply the best
checkpoint of each model variant to the test set. Figure 5.6 summarizes the performances
of all models evaluated by the four metrics described before. The exact scores underlying
this figure can be found in table B.1 in the appendix. Figure 5.7 shows the trajectories
of the MSE 400 and the EMD over time for all model variants, averaged over the entire
test set. Figure 5.8 shows exemplary rollout predictions from all model variants for one
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of the test set scenarios. The link to videos of the rollout predictions can be found in
table A.1 in the appendix.

Figure 5.5: Screening results of the 1-step-noise model on the validation set during training.

Figure 5.6: Test set performances of the 1-step (1s), 1-step-noise (1sn), 1-step-noise-bounded
(1snb), 2-step-scratch (2ss) and 2-step-initialized (2si) models.

The 1-step model variant shows the best performance with respect to the MSE-acc
1 metric. This model is solely trained for this task, without any artificial noise or
multi-step error, leading to its superior performance on the specific task of one-step
predictions. While its MSE 20 and MSE 400 evaluations are rather similar to other
model variants, its EMD evaluation shows a far worse performance. Therefore, the
model’s rollout prediction follows the ground truth rollout closely, but rather tries to
hold the particles at similar positions, than to really apply dynamics which produce
a similar visual behaviour compared to the FLIP trajectory. The rollout example in
figure 5.6 shows that the model sometimes produces strange, nonphysical motions (last
column).

The 1-step-noise model shows a much better EMD performance, but performs worse
than the 1-step model when evaluated with MSE-acc 1. This is likely due to the artificial
noise which challenges this model with an additional difficulty during training. Figure
5.8 shows that this model variant leads to fluid motion which is more compressed than

32



Chapter 5 Learning to Simulate

Figure 5.7: Error trajectories of the MSE 400 (MSE averaged over full rollouts) and the EMD
metrics for all five model variants. The blue line represents the mean (over the entire dataset)
and the shaded area indicates the range of possible values.

in the ground truth rollout. Similar compression can be seen in the rollout of the 1-step
model.

The 1-step-noise-bounded model has the best EMD performance, resembles the 1-step-
noise model’s performance for MSE-acc 1, but has lower performance in case of MSE
20 and MSE 400. With removal of the boundary distance features, the model has to
extract this information solely from the interaction between fluid particles and obstacles.
Figure 5.8 shows that this model variant produces rollouts with a similar density than the
ground truth. However, it produces dynamics which cause the fluid to slide faster along
the boundaries, possibly caused by the constant interactions with boundary particles
which normally lets a fluid block splash at an obstacle.

For the 2-step model variants, the 2-step-initialized model has better performances in
all metrics compared to the 2-step-scratch model. It surpasses all other variants on the
MSE 20 and MSE 400 metrics and reaches similar performances to the best models for
the MSE-acc 1 and EMD metrics. Thus, using a 1-step model as initialization for 2-step
models seems to have a positive effect. However, figure 5.8 shows that it has inherited
the compression tendency of the 1-step model, leading to a lower density of the fluid
during rollout. In contrast, the 2-step-scratch model preserves the density throughout
the rollout (similar to the 1-step-noise-bounded model).

As described in section 5.3 the 1-step-noise-bounded model should have the capability to
generalize to larger domains. Figure 5.9 shows two examples from such a generalization
experiment (link to videos can be found in table A.1 in the appendix). We extend the
domain size of 32× 32 to 32× 64 and adapt the scaling to put the position values into
the range of 0.1 to 0.9 in x and 0.1 to 1.8 in y direction. Then, we use both models,
1-step-noise and 1-step-noise-bounded (trained on 32×32 domains), to generate rollouts
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for these new scenarios. Figure 5.9 shows that the 1-step-noise model produces dynamics
which let the fluid splash when crossing half of the new domain. This height equals the
bottom of the domain seen during training where fluid particles normally splash and
are accelerated in x-direction. Therefore, the model seems to have learned to correlate
accelerations in x-direction with the distance to the boundaries.

The 1-step-noise-bounded model shows better behaviour than the 1-step-noise model
but still deforms the fluid block after crossing half of the domain. This indicates that
the model normally not only correlates accelerations and boundary distances but also
accelerations and velocities. In the training examples, most fluids had similar velocities
right before splashing at the bottom. When the fluid crosses half of the new domain at
height 32, the particles cross this velocity threshold, causing the model to decelerate the
particles in y- and accelerate the particles in x-direction.
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Figure 5.8: Example predictions for all five model variants. Different time steps are indicated at
the top. The top row shows the ground truth trajectory. The initial state of the trajectory is
shown at the top of the second column of figure 5.3.
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Figure 5.9: Two example predictions from the domain generalization experiment. Both left and
right examples show ground truth (FLIP), predictions from 1-step-noise and predictions from
1-step-noise-bounded at the frames indicated by the numbers. The red dashed lines indicate the
original domain size.
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Chapter 6

Conclusions and Outlook

Our differentiable FLIP simulation for incompressible, inviscid fluids, extends the differ-
entiable physics framework ΦFlow and can be used to solve inverse optimization problems.
Our simulator enables the integration of graph- and point-based deep learning models
into fluid simulations and supports the development of new, physics-based losses and
architectures.

We have shown, that GNS models are capable of learning fluid dynamics from a dataset
produced by our FLIP simulator. Training the GNS models with our multi-step loss
enabled the models to mitigate accumulating errors in simulation rollouts and yielded
competitive results compared to models trained with the artificial noise proposed by
Sanches-Gonzales et al. [64]. Removing the domain-specific boundary distance features
and training GNS models on domains with obstacle boundaries, increased the models
capacity to generalize to larger domains. However, we find that these models still have
the tendency to deform the fluids as soon as they are passing the original domain size
seen during training. This indicates that the GNS does not really learn the underlying
physics but rather problem-specific correlations between input velocities and output
accelerations. This is supported by the fact that the architecture takes the previous five
velocities as inputs and does not only rely on just the previous velocity as one would
expect from physical dynamics. Furthermore, most models are unable to retain the
original density of the fluid and compress the fluid particles. This is another unphysical
behaviour supporting our conclusion.

Extending the GNS architecture with strong inductive biases towards physical laws and
symmetries could improve its physical understanding and force it to learn actual dy-
namics instead of problem-specific correlations. Future work should also concentrate on
examining the physical reasoning of learned simulators in more detail. Transforming
parts of learned simulators into symbolic models [17, 15] and extending tools like the
recently proposed GNNExplainer from Ying et al. [82] could provide further insights
into the reasoning of Graph Networks and could yield new ideas on how to improve their
physical understanding.
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Having a differentiable fluid simulation and learned, differentiable simulators, future
work could also compare their respective behaviour in optimization problems and explore
the use of learned simulators for solving inverse problems.

Another possibility for future work could be to solve current limitations of our FLIP
simulator. Specifically, the obstacle interaction could still be improved by implementing
boundary conditions with different behaviour at obstacle bottom and top. This could
improve the physical behaviour of the simulation by preventing fluid particles from
sticking to the lower side of obstacles, which happened in some of the tested scenarios.
Our optimization experiments in section 4.3 have shown, that the chaotic nature of fluid
dynamics can prevent gradient descent from converging to satisfying solutions. This
could be improved by replacing the L2 loss with a distributional loss which is invariant
to particle permutations. One possibility would be to use a frequency loss on the density
distribution of the fluid on the underlaying grid. This requires implementing custom-
designed gradients which is currently a work-in-progress.
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Appendix A

Video Links

Simulation examples (section 4.1) https://git.io/JOUjI
FLIP vs. PIC (section 4.2) https://git.io/JOUh1
Symmetry experiments (section 4.2) https://git.io/JOUhS
Example predictions from GNS models (section 5.4) https://git.io/JOOQG
Example generalization experiments (section 5.4) https://git.io/JOOQn

Table A.1: Links to videos of different simulations and predicted rollouts.
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Appendix B

Performance Table of GNS Models

Model variant EMD (10−2) MSE-acc 1 (10−1) MSE 20 (10−5) MSE 400 (10−2)
1-step 2.598 3.775 5.653 2.853
1-step-noise 1.617 4.980 5.574 2.469
1-step-noise-bounded 1.336 4.985 5.648 2.959
2-step-scratch 1.428 4.535 5.181 2.682
2-step-initialized 1.367 3.933 4.711 2.430

Table B.1: Testset performance of all model variants from section 5.3, evaluated with multiple
metrics. The MSE is reported for one-step (MSE-acc 1) acceleration predictions or averaged over
either 20-step rollouts (MSE 20) or full rollouts (MSE 400). Bold values indicate the best score
of the respective metric.
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