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Motivation
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U.S. National Oceanic and Atmospheric Administration (NOAA)
https://celebrating200years.noaa.gov/breakthroughs/climate_model/modeling_schematic.html



Motivation
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Differentiable Physics

Learned Simulators / 
Physics-Informed Architectures

Graph Network-
based Simulators 
(GNS)



Goals

4

1. Differentiable FLIP simulator for 𝚽𝐅𝐥𝐨𝐰

2. Apply GNS to FLIP data

3. Extend GNS with new training variants



FLIP Algorithm
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Conjugate
Gradient

Brackbill and Ruppel. 1986 / Zhu and Bridson. 2005



FLIP Verification - Simulation
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FLIP Verification - Simulation
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FLIP Simulation - Differentiability
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FLIP Dataset
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Training / 
Validation

Test



Graph Networks

10Battaglia et al. 2018

Edge update:

Edge aggregation:

Node update:



Graph Network-based Simulators

11Sanchez-Gonzalez et al. 2020



Training Procedures and Quantitative Comparison
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1-step-noise model (1sn)

1-step-noise-bounded 
model (1snb)

2-step-scratch model (2ss)

Sanchez-Gonzalez et al. 2020

GNS

2-step-initialized model (2si)



1-step-noise model
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1-step-noise model
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2-step-scratch model
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Generalization Test
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1-step-noise-bounded 1-step-noiseGround Truth



Generalization Test
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1-step-noise-bounded 1-step-noiseGround Truth



Conclusions and Outlook
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• Deep learning ↔ Differentiable physics 

• New error mitigation

• Improved generalization

• Weak physical understanding

Physical biases

Analyze reasoning

Inverse Problems

Improve FLIP

THANK YOU!

GNS

Ground Truth 1-step-noise-bounded 1-step-noiseGround Truth 1-step-noise-bounded 1-step-noise



Appendix



FLIP Verification - Simulation
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FLIP Verification - Simulation
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FLIP Verification - Artificial Viscosity
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FLIP Verification - Artificial Viscosity
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FLIP Verification - Symmetry Test
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FLIP Verification - Symmetry
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FLIP Simulation - Differentiability
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Radius Analysis

27



Training Details
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• Adam optimizer

• Exponential learning rate decay (𝟏𝟎−𝟒 to 𝟏𝟎−𝟔)

• Domain size 0.8

• Connectivity radius 0.03

• Normalization to zero mean and unit variance



Model Screening
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Error Trajectories
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Quantitative Comparison
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1-step model
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1-step-noise-bounded model
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2-step-initialized model
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Model Predictions
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Generalization Test
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Ground Truth 1-step-noise-bounded 1-step-noise



Generalization Test
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Ground Truth 1-step-noise-bounded 1-step-noise



Generalization Test
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Ground Truth 1-step-noise-bounded 1-step-noise



Generalization Test
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Ground Truth 1-step-noise-bounded 1-step-noise



Generalization Test
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